Math 4550 Hw 1 Solutions

inverse of 0 is 0 inverse of T is T

Ínverse	of	0	is	0
inverse	of	T	is	3
inverse	of	2	is	2
inverse	of	3	is	Ī

$$\exists \mathbb{Z}_{6} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$$

$$\begin{array}{c|c} element & inverse \\ \hline \hline 0 & \hline 0 \\ \hline \hline 1 & \hline 5 \\ \hline \hline 2 & \hline 4 \\ \hline \hline 2 & \hline 4 \\ \hline \hline 3 & \hline 3 \\ \hline \hline 4 & \hline 2 \\ \hline 5 & \hline 1 \\ \end{array}$$

e because
$$\overline{0} + \overline{0} = \overline{0}$$

because $\overline{1} + \overline{5} = \overline{6} = \overline{0}$
because $\overline{2} + \overline{4} = \overline{6} = \overline{0}$
because $\overline{3} + \overline{3} = \overline{6} = \overline{0}$
because $\overline{4} + \overline{2} = \overline{6} = \overline{0}$
because $\overline{5} + \overline{1} = \overline{6} = \overline{0}$

$(4) U_{4} = \xi$	1,5,5 ² ,	δ3} ^	vhere	S	=e 	<u>"</u> = e	聖え
$S = e^{\sum_{l=1}^{n}}$			ปน	1	5	٢٢	23
			1	1	5	gz	³ ع
			5	3	2 ²	S 3	1
			5 ²	ξ ²	gr	1	S
\checkmark	, S'		53	5 ³	1	2	S ²
		T		SEY Se	F01 5 ⁴ = .alcu	RIMULF = 1 Nate.	4:
element	inverse						
1	1	ϵ	Decau	se	1-1	.=1	
S	S ³	e 1	recas	se	8-S =	= \$ '= .	1
5 ²	s ²	e b	ecau	se	5-5	= 5 =	- T
53	5	er be	.cause	S	s = 2	s ⁴ = 1	-

 $U_6 = \{1, 5, 5^2, 5^3, 5^4, 5^5\}$ where $S = e^{\frac{2\pi i}{6}} = e^{\frac{\pi}{3}i}$

FORMULA: KEY S⁶ = 1 Use to calculate

e	lement	inverse	
	1	1	← because 1·1=1
-	S	ς ۶	e because $S \cdot S^2 = S^2 = 1$
	Sr	54	\leftarrow because $S^2 \cdot S' = S^2 = 1$
-	53	53	$e^{3} because g^{3} g^{3} = g^{6} = 1$
-	54	S ²	\leftarrow because $S' \cdot S^2 = S^6 = 1$
~	5 s	S	\leftarrow because $g^{5}.S = S^{6} = 1$
		1	7

T

inverses: $1^{-1} = 1$ $s^{-1} = s$ $r^{-1} = r^2$ $(sr)^{-1} = sr^2$ $(r^2)^{-1} = r$ $(sr^2)^{-1} = sr^2$

$$r^{2}r^{3}srsr^{-2} = r^{5}srsr^{-2} = rsrsr^{-2}$$

$$= rsr^{2}rsr^{-2} = rsrsr^{-2}$$

$$= sr^{2}r^{-2} = 1 r^{-2} = r^{-2} = r^{2}r^{-2} = r^{2}$$

$$(c) r \cdot r^{3} = r^{4} = 1 + hus r^{-1} = r^{3}$$

$$r^{2} \cdot r^{2} = r^{4} = 1 + hus (r^{2})^{-1} = r^{2}$$

$$(sr)(sr) = srsr = ssr^{-1}r = s^{2} \cdot 1 = 1 \cdot 1 = 1$$

$$+ hus (sr)^{-1} = sr$$

$$(sr^{2})(sr^{2}) = sr^{2}sr^{2} = s sr^{-2}r^{2} = s^{2} \cdot 1 = 1 \cdot 1 = 1$$

$$+ hus (sr^{2})^{-1} = sr^{2}$$

Now we calculate
$$A^{-1}, B^{-1}$$
, and AB .
We need this formula:
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Thus,

$$A^{-1} = \frac{1}{1 \cdot (-(-1))(2)} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 \\ -2/3 & 1/3 \end{pmatrix}$$

$$B^{-1} = \frac{1}{1 \cdot 5 - 0 \cdot \frac{1}{2}} \begin{pmatrix} 5 & 0 \\ -1/2 & 1 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 5 & 0 \\ -\frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} 10/4 & 0 \\ -1/4 & 2/4 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1/2 & 5 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 - 1 \cdot \frac{1}{2} & 1 \cdot 0 - 1 \cdot 5 \\ 2 \cdot 1 + 1 \cdot \frac{1}{2} & 2 \cdot 0 + 1 \cdot 5 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -5 \\ \frac{3}{2} & 5 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 1 \\ -1 & 2 \end{pmatrix}$
 $det(A) = 5 \cdot 3 - 0 \cdot 0 = 15 \neq 0$
 $det(B) = (-11(2) - (1)(-1) = -1 \neq 0$
To show that
 $A \text{ and } B \text{ are}$
in $GL(2, IR)$
you show they
have non-zero
determinent

Now we calculate
$$A^{-1}, B^{-1}$$
, and AB .
We need this formula:
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Thus,

$$A^{-1} = \frac{1}{5 \cdot 3 - 0 \cdot 0} \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \end{pmatrix}$$

$$B^{-1} = \frac{1}{(-1)(2) - (1)(-1)} \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} = \frac{1}{-1} \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -5 + 0 & 5 + 0 \\ 0 - 3 & 0 + 6 \end{pmatrix} = \begin{pmatrix} -5 & 5 \\ -3 & 6 \end{pmatrix}$$

(f) We know that

$$D_{2n} = \left\{ 1, r, r^{2}, ..., r^{n-1}, s, sr, sr^{2}, ..., sr^{n-1} \right\}$$
Where $r^{n} = 1, s^{2} = 1, r^{k} s = sr^{k}$
Thus,
 $(sr^{k})(sr^{k}) = sr^{k} sr^{k}$
 $= ssr^{k}r^{k}$
 $r^{k}s = sr^{k}$
 $r^{k}s = sr^{k}$
 $= s^{2} \cdot 1$
 $show that$
 $sr^{k} = 1$
Since $(sr^{k})(sr^{k}) = 1$ we
Know that $(sr^{k})^{-1} = sr^{k}$.

Suppose that a * b = a * c. Since G is a group and $a \in G$ there exists a^{-1} in G. Multiply a * b = a * c by a^{-1} to get $a^{-1} * (a * b) = a^{-1} * (a * c)$ By associativity in G we get $(a^{-1} * a) * b = (a^{-1} * a) * c$

Thus, $e \neq b = e \neq c$ where e is the identity of G. $5o_{j}$ b = c.

(1)
Our assumption is that if
$$x \in G$$

then $x'' = x$. That is, $x * x = e$.
Let's show that G is abelian.
Let $a, b \in G$.
By assumption we know
 $(a + b) * (a + b) = e$
 $b * b = e$
 $b * b = e$
We are assuming
that $x * x = e$.
Plug in $x = a + b$.
 $x = a$
 $x = b$
to get these.

So,
$$a \star b \star a \star b = e$$
.
Apply $a \text{ on the left to get}$
 $a \star (a \star b \star a \star b) = a \star e$
Thus,
 $b \star a \star b = a$.

Apply b to the left to get

$$b*(b*a*b) = b*a.$$

Thus,
 $a*b = b*a.$

(12)
$$\mathbb{Z}_{10} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}$$

(a) Let's show that \mathbb{Z}_{10} is not a
group under multiplication.
The identity is $\overline{1}$ under multiplication.
Let's show that $\overline{2}$ has no inverse.
Try all combinations:
 $\overline{2} \cdot \overline{0} = \overline{0}$
 $\overline{2} \cdot \overline{1} = \overline{2}$
 $\overline{2} \cdot \overline{2} = \overline{4}$
 $\overline{2} \cdot \overline{3} = \overline{6}$
 $\overline{2} \cdot \overline{4} = \overline{8}$
 $\overline{2} \cdot \overline{5} = \overline{0}$
 $\overline{2} \cdot \overline{6} = \overline{12} = \overline{2}$
we are in \mathbb{Z}_{10} $\left\{ \begin{array}{c} \overline{2} \cdot \overline{6} = \overline{12} = \overline{2} \\ \overline{2} \cdot \overline{7} = \overline{14} = \overline{4} \\ \overline{2} \cdot \overline{9} = \overline{18} = \overline{8} \end{array} \right\}$
Thus, $\overline{2}$ has no inverse under multiplication

١.

(b) Let
$$G = \{\overline{z}, \overline{y}, \overline{c}, \overline{s}\}$$
 in \mathbb{Z}_{10} .
We will show that G is a group
under multiplication.
Since we are in \mathbb{Z}_{10} we know that
 $\overline{a} * (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \times \overline{c}$.
Let's check for closure, identity, and inverses
 $\overline{G} \quad \overline{z} \quad \overline{4} \quad \overline{6} \quad \overline{8}$
 $\overline{z} \quad \overline{4} \quad \overline{6} \quad \overline{8}$
 $\overline{5} \quad \overline{6} = \overline{2}$
 $\overline{4} \quad \overline{6} = \overline{4}$
 $\overline{5} \quad \overline{6} = \overline{6}$
 $\overline{8} \quad \overline{6} = \overline{6}$
 $\overline{8} \quad \overline{6} = \overline{8}$
So $\overline{6}$ is the
identity under
multiplication
(2) $\overline{2} \cdot \overline{6} = \overline{2}$
 $\overline{4} \cdot \overline{6} = \overline{4}$
 $\overline{5} \cdot \overline{6} = \overline{6}$
 $\overline{8} \cdot \overline{6} = \overline{8}$
So $\overline{6}$ is the
identity under
multiplication
(3) $\overline{2} \cdot \overline{8} = \overline{6}$
 $\overline{6} \quad \overline{4} \quad \overline{4} = \overline{24} = \overline{4}$
 $\overline{6} \quad \overline{6} = \overline{6}$
Thus,
 $\overline{2} \quad \overline{4} = \overline{8} \quad \overline{6} \quad \overline{5} \quad \overline{5}$
 $\overline{4} \quad \overline{4} = \overline{6} \quad \overline{5} \quad \overline{5} \quad \overline{5}$
 $\overline{4} \quad \overline{4} = \overline{6} \quad \overline{5} \quad \overline{5} \quad \overline{5}$
 $\overline{5} \quad \overline{5} = \overline{6}$
 $\overline{7} \quad \overline{7} \quad \overline{7} \quad \overline{8} \quad \overline{8} \quad \overline{5} = \overline{5}$
 $\overline{7} \quad \overline{7} = \overline{4} \quad \overline{6} \quad \overline{5} = \overline{5}^{-1}$

(4) Let IRt denote the set of positive real numbers. \mathbb{R}^+ $\frac{\Theta}{2} - 1 \qquad O \qquad (\qquad 2 \qquad 3 \qquad)$ Consider X*y=JXy For example, $Z*3 = \sqrt{2\cdot3} = \sqrt{6}$ This operation is not associative. For example $|*(2*3) = \sqrt{|\cdot(2*3)|} = \sqrt{|\cdot\sqrt{2\cdot3}|}$ = JJZ3 ~ 2.45

and $(1 \times 2) \times 3 = \sqrt{(1 \times 2) \cdot 3} = \sqrt{\sqrt{1 \cdot 2} \cdot 3}$ $= \sqrt{\sqrt{2} \cdot 3} \approx 2.06$

So, * is not associative and IRt is not a group under *.

(5) Let
$$G = \mathbb{R} - \{-1\}$$
.

We will show that G is a group
under the Operation $a \neq b = a + b + a b$
(i) Suppose $a, b \in G$.
Then $a, b \in \mathbb{R}$ and $a \neq -1, b \neq -1$.
We will show that $a \neq b \in G$.
We have $a \neq b = a + b + a b$.
This is a real number in \mathbb{R} .
We show $a + b + a b \neq -1$.
Suppose $a + b + a b = -1$.
Then, $a + a b = -1$.
Then, $a + a b = -1$.
Then, $a = -1$.
Then, $a = -1$.
Contradiction.
Thus, $a \neq b = a + b + a b$ is in \mathbb{R} but net -1.
So, $a \neq b \in G$.

(ii) Let
$$a,b,c \in G$$
.
Then,
 $a \neq (b \neq c) = a \neq (b + c + bc)$
 $= a + (b + c + bc) + a(b + c + bc)$
 $= a + b + c + bc + ab + ac + abc$

and

$$(a \pm b) \pm c = (a + b + ab) \pm c$$

 $= (a + b + ab) \pm c \pm (a + b + ab)c$
 $= a \pm b \pm ab \pm c \pm ac \pm bc \pm abc$

We see that
$$a \neq (b \neq c) = (a \neq b) \neq c$$

(iii) We will show that
$$e=0$$

Heres how I got $e=0$.
We need $e \star x = x$ for all x.
We need $e \star x = x$ for all x.
This gives $e + x + ex = x$
That is $e + ex = 0$
That is $e + ex = 0$
That is $e + ex = 0$
That is $e + ex = 0$

So,
$$e=0$$
 or $|+x=0$.
Since $x \neq -1$ for all $x \in G$
we need $e=0$

Let
$$x \in G$$
.
Then,
 $0 \neq x = 0 + x + 0x = x$
and
 $x \neq 0 = x + 0 + x 0 = x$
 $x \neq 0$ is the identity element.

(iv) Let
$$x \in G$$
.
Then $x \in \mathbb{R}$ and $x \neq -1$.
We want to find an inverse \mathcal{Y} for x .
We need $x \neq \mathcal{Y} = \mathcal{O}$
We need $x \neq \mathcal{Y} = \mathcal{O}$.
So, need $x + \mathcal{Y} + x \mathcal{Y} = \mathcal{O}$.
That is $\mathcal{Y} + x \mathcal{Y} = -\mathcal{X}$
Or, $\mathcal{Y}(1 + x) = -\mathcal{X}$
That is, $\mathcal{Y} = \frac{-x}{1 + x}$ which exists since $1 + x \neq 0$
because $x \neq -1$
Is \mathcal{Y} in G ?

If it wasn't then
$$\frac{-x}{1+x} = -1$$
.
But then $-x = -1 - x$ or $0 = -1$ which can't happen.
So, $y \in G$ for $y \in IR$ and $y \neq -1$.

Let's show that
$$x' = \frac{-x}{1+x}$$

We have

$$\left(\frac{-x}{1+x}\right) * x = \frac{-x}{1+x} + x + \left(\frac{-x}{1+x}\right) x$$

$$= \frac{-x + x + x^{2} - x^{2}}{1+x} = \frac{0}{1+x} = 0$$

and

$$x * \left(\frac{-x}{1+x}\right) = x + \frac{-x}{1+x} + x \left(\frac{-x}{1+x}\right)$$

$$= \frac{x + x^2 - x - x^2}{1+x} = \frac{0}{1+x} = 0$$

So,
$$x * \left(\frac{-x}{1+x}\right) = 0$$
 and $\left(\frac{-x}{1+x}\right) * x = 0$ where
0 is the identity. Thus, $x' = \frac{-x}{1+x}$.

By (i), (ii), (iii), (iv) we have that G is a group under atb = a+b+ab

(b) Let G be an abelian group.
Let
$$a, b \in G$$
.
We will show by induction
that $(a+b)^n = (a^n) * b^n$.
If $n=1$ then
 $(a+b)^1 = a+b = (a^1) * (b^1)$.
Suppose
 $(a+b)^k = (a^k) * (b^k)$ (\pm)
for some k.
 $x^{k+1} = x^k \pm x^1$
Then,
 $(a+b)^k = (a+b)^k * (a+b)$
 $= (a^k) * (b^k) * a * b$
 $= (a^k) * (a * b)^k + (a+b)$
 $= (a^k) * (a * b)^k + (b^k) + b$

We have shown $(a * b)^{k+1} = (a^k) * (b^k)$. By induction $(a * b)^n = (a^n) * (b^n)$ for all Λ .